Naval Architecture Course: EMNA 102

Module code	Module name	Credit Value
EMVA 102	Naval Architecture 102	14

Purpose

The module develops learners' understanding of marine terminology and the basics of ship stability and design.

Learning outcomes

On successful completion of this module the learners will be able to:

- Understand and use basic maritime and vessel terminology
- Understand the broad history of the use of vessels and their changes in design through time and the reasons for this
- Explain the factors influencing displacement and buoyancy (vessel gross displacement, hull dimensions)
- Calculate displaced volume of simple floating bodies
- Explain the factors influencing buoyancy and reserve buoyancy
- Explain the effect of water density of flotation and stability
- Calculate centre of buoyancy of simple floating body
- Explain the concept of load lines and draft marks and their relationship to stability
- Explain basic vessel stability
- Explain how inclining experiments are carried out and their purpose (GM, BM etc.)
- Calculate the stability of a simple floating body
- Calculate metacentic height of simple floating bodies
- Explain seakeeping combined with the effect of cargo and free surfaces in tanks
- Explain the resistance to movement of a vessel moving through water (draft and hull configuration)
- Explain the effect of vessel hull appendages on resistance (bulbous bow, stability tabs and rudder)
- Explain the reasons for a vessels attitude when floating (heel, trim and list)
- Explain the stresses on a ship's hull due to loading and sea conditions (hogging and sagging)
- Calculate the stresses imposed on a floating body due to hogging and sagging
- Explain basic vessel hull construction materials (wood, steel, aluminium, GRP, etc)
- Explain and describe corrosion of steel structures (cathodic protection)
- Explain the different types of ships built/designed of the reasons for their different design philosophies

Core content (as per prospectus/ or refined)

- Understanding of marine terminology
- Understand major factors affecting vessel stability
- Understand major forces applied to a floating body
- Application of advanced CAD techniques (functional design)

Assessment

Year Mark:

Test 1	30%
Assignment 1	20%
Test 2	30%
Assignment 2	20%

Examination: 1 x 3hr paper

Final mark = (year mark x 0.4) + (Examination mark x 0.6)

Minimum pass mark = 50%

Moderation Internal

Pre-requisites for this module PHYV 101 and MATV 101

Co-requisites for this module